mixed extension

Definition

Let G=(N,(Si)iN,(ui)iN)G = (N, (S_i)_{i \in N},(u_i)_{i \in N}) be a strategic-form game in which for every player iNi \in N, the set of pure strategies SiS_i is nonempty and finite. Denote by S:=S1×S2×...×SnS := S_1 \times S_2 \times ... \times S_n the set of pure strategy vectors. The mixed extension of GG is the game Γ=(N,(Σi)iN,(Ui)iN)\Gamma = (N, (\Sigma_i)_{i \in N}, (U_i)_{i \in N}) in which for each iNi \in N, player ii's set of strategies is Σi=Δ(Si)\Sigma_i = \Delta(S_i), and his payoff function is Ui:ΣU_i : \Sigma \to \mathbb{R}, which associates each strategy vector σ=(σ1,...,σn)Σ=Σ1×...×Σn\sigma = (\sigma_1,...,\sigma_n) \in \Sigma = \Sigma_1 \times ... \times \Sigma_n with the payoff Ui(σ)=𝐄σ[ui(σ)]=(s1,...,sn)Sui(s1,...,sn)σ1(s1)σ2(s2)...σn(sn)U_i(\sigma) = \mathbf{E}_\sigma[u_i(\sigma)] = \sum_{(s_1,...,s_n)\in S} u_i (s_1,...,s_n)\sigma_1(s_1)\sigma_2(s_2)...\sigma_n(s_n)


References

  1. M. Maschler, E. Solan, and Shmuel Zamir, Game Theory, Cambridge University Press, 2013, p. 147.